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It has been suggested that Glauber �inflow� and Sznajd �outflow� zero-temperature dynamics for the one-
dimensional Ising ferromagnet with nearest-neighbor interactions are equivalent. Here we compare the two
dynamics from the analytical and computational points of view. We use the method of mapping an Ising spin
system onto the dimer RSA model and show that already this simple mapping allows us to see the differences
between inflow and outflow zero-temperature dynamics. Then we investigate both dynamics with synchronous,
partially synchronous, and random sequential updating using the Monte Carlo technique and compare both
dynamics in the number of persistent spins, clusters, mean relaxation time, and relaxation time distribution.

DOI: 10.1103/PhysRevE.74.031109 PACS number�s�: 05.50.�q

I. INTRODUCTION

The majority of natural phenomena observed in physics,
biology, geology, social sciences, etc., are nonequilibrium
processes. Unfortunately, the theory of nonequilibrium statis-
tical mechanics is far less developed than its equilibrium
counterpart. As a result, these ubiquitous phenomena are
poorly understood �1�. The zero-temperature dynamics of
simple models such as Ising ferromagnets provides interest-
ing examples of nonequilibrium dynamical systems with
many attractors �absorbing configurations, blocked configu-
rations, zero-temperature metastable states� �2�. In this paper
we focus on so-called single-spin-flip dynamics for the one-
dimensional Ising ferromagnet. The best-known example of
such dynamics for the Ising model is Glauber dynamics �3�.
It can be viewed as “inflow” dynamics, since the center spin
is influenced by its nearest neighbors �4�. Another type of
dynamics, which can be called “outflow” dynamics, since the
information flows from the center spin �or spins� to the
neighborhood, has been introduced to describe opinion for-
mation in social systems �5�. It has been suggested �6,7� that
both dynamics for an Ising ferromagnet with nearest-
neighbor interactions are equivalent, at least in one dimen-
sion. However, this seems to be true only in some particular
cases. The aim of this paper is to compare generalized out-
flow and inflow dynamics for a chain of Ising spins and show
in which cases these are equivalent and in which they differ.

It should be noticed here that the models studied in this
paper are closely related to the majority-rule �MR� model
introduced by Krapivsky and Redner �8�. In the MR model a
selected group of G spins adapts to the state of the local
majority and eventually the system reaches consensus �all
spins up or all spins down�. Interestingly, a system described
by the MR model and an Ising spin system with outflow
dynamics and random sequential updating �known as the
Sznajd model� behave similarly in some aspects. For in-
stance, the exit probability has almost the same, nontrivial
dependence on the initial magnetization �4,8�, in contrast to
the linear voter model �8,9,11�.

However, both inflow and outflow dynamics with random
sequential updating and the MR model belong to a very gen-
eral class of voter models �VMs�. Following Liggett �9,10�,
VM models are continuous-time Markov processes, which
are described by specifying the rates at which the system
changes from one configuration to another. Changes are gen-
erally local, in that only several sites change state at any
given time, and the rates for such transitions depend on the
configurations near those sites. The inflow dynamics has al-
ready been reformulated in terms of a linear voter model,
which is exactly soluble �9,13�. Probably the outflow dynam-
ics could be reformulated in terms of a nonlinear voter
model. Unfortunately, except for the linear voter model case
and some very special cases of nonlinear voter models, the
exact symmetry of voter models places them beyond the
reach of currently available techniques for rigorous math-
ematical analysis, but at least some Monte Carlo simulation
results are known �12�. Thus, it would be interesting to re-
formulate the outflow dynamics in terms of a nonlinear voter
model and check if this is one of the few fortunate solvable
cases or at least if there are some Monte Carlo results for
related voter models. Although this is an interesting and im-
portant task we leave it for future work and concentrate here
rather on comparisons of both dynamics under various up-
dating schemes.

In Secs. II and III we recall ideas of inflow and outflow
dynamics and formulate the generalized versions of both dy-
namics. We take both dynamics under a common roof, refor-
mulating them without using the concept of energy. In Sec.
IV we use the illuminating method of mapping the Ising spin
system onto the dimer RSA model and make simple mean-
field-like calculations to show the difference between the dy-
namics. In Sec. V we present Monte Carlo results for both
dynamics with several kinds of updating including synchro-
nous, partially synchronous, and random sequential updating.
The summary and conclusions are the subjects of Sec. VI of
the paper.

II. INFLOW DYNAMICS

The best-known example of such dynamics for the Ising
model is Glauber dynamics. Within Glauber dynamics, in a
broad sense, each spin is flipped Si���→−Si��+1� with a rate
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W��E� per unit time and this rate is assumed to depend only
on the energy difference implied in the flip �2�. The two most
usual choices of flipping rates in the case of discrete updates
are the heat-bath and Metropolis algorithms; both obey the
detailed balance condition

W��E�
W�− �E�

= exp�− ��E� . �1�

Recently it was shown �2� that there is a vast family of
dynamical rates, besides these two choices, which obeys the
condition �1�. Among them the class of zero-temperature dy-
namics defined as

W��E� = �1 if �E � 0,

W0 if �E = 0,

0 if �E � 0,

�2�

is very interesting. The zero-temperature limits of the heat-
bath and Metropolis rates are, respectively, W0

HB=1/2 and
W0

M =1. For any nonzero value of the rate W0 corresponding
to free spins, the dynamics belongs to the universality class
of the zero-temperature Glauber model. This is a prototypical
example of phase ordering by domain growth �coarsening�.
The typical size of ordered domains of consecutive ↑ and ↓
spins grows as L�t�� t1/2. The particular value W0=0 corre-
sponds to the constrained zero-temperature Glauber dynam-

ics ��2� and references therein�. In the constrained zero-
temperature Glauber dynamics, the only possible moves are
flips of isolated spins and the system therefore eventually
reaches a blocked configuration, where there is no isolated
spin �2�. Very interesting results for the zero-temperature
Glauber dynamics have also been obtained using computer
simulations �14–17�.

In out-of-equilibrium systems, there is usually no energy
function and the system is only defined by its dynamical
rules �18�. This is also the case of the sociophysics Sznajd
model. For this reason we reformulate the definition of the
zero-temperature Glauber dynamics for the Ising ferromag-
net without using the concept of energy in the following
way:

Si�� + 1� =�1 if �
NN

SNN � 0,

− Si��� with probability W0
if �

NN

SNN = 0,

− 1 if �
NN

SNN � 0,

�3�

where �NNSNN denotes the sum over nearest neighbors.
In one dimension, which is the case of this paper, the

above definition can be obviously written as

Si�� + 1� = �1 if S���i−1 + S���i+1 � 0,

− Si��� with probability W0 if S���i−1 + S���i+1 = 0,

− 1 if S���i−1 + S���i+1 � 0.

�4�

III. OUTFLOW DYNAMICS

Outflow dynamics was introduced to describe opinion
change in a society. The idea is based on the fundamental
social phenomenon called “social validation.” However, in
this paper we do not focus on social applications of the
model �for interested readers, reviews can be found in
�19–22��. On the contrary, here we investigate the dynamics
from the theoretical point of view.

In the original model a pair of neighboring spins Si and
Si+1 was chosen and if SiSi+1=1 the two neighbors of the pair
followed its direction, i.e., Si−1→Si �=Si+1� and Si+2→Si

�=Si+1�. Such a rule was also used in all later papers dealing
with the one-dimensional case of the model. However, the
case in which SiSi+1=−1 was noted as far less obvious. For
example, in the original paper in the case of SiSi+1=−1,
Si−1→Si+1 and Si+2→Si. However, it was noticed in several
papers that such a rule is unrealistic in a model trying to
represent the behavior of a community. Moreover, it can be
seen from the following two rules that the original Sznajd
model with both ferromagnetic and antiferomagnetic rules is

equivalent to the single simple rule that every spin takes the
direction of its next-nearest neighbor independently of the
product SiSi+1.

Ferromagnetic rule. If Si���Si+1���=1 then Si−1��+1�
→Si��� and Si+2��+1�→Si+1��� is equivalent to the rule: that
if Si���Si+1���=1 then Si−1��+1�→Si+1��� if Si+2��+1�
→Si���.

Antiferromagnetic rule. If Si���Si+1���=−1 then Si−1��
+1�→Si+1��� and Si+2��+1�→Si���.

Thus, the two rules above can be rewritten as a simple
single rule: Si−1��+1�→Si+1��� and Si+2��+1�→Si���.

In later papers we proposed two modifications of the
model in which the antiferromagnetic rule was replaced by
one of rules described below.

Modification 1. If Si���Si+1���=−1, then Si−1��+1�
→Si−1��� and Si+2��+1�→Si+2���.

Modification 2. If Si���Si+1���=−1, then Si−1��+1�→
−Si−1��� and Si+2��+1�→−Si+2��� with probability 1/2.

The generalized dynamics including the two modifica-
tions above, can be written as
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Si�� + 1� = �1 if Si+1��� + Si+2��� � 0,

− Si��� with probability W0 if Si+1��� + Si+2��� = 0,

− 1 if Si+1��� + Si+2��� � 0.

�5�

It is easy to see that modification 1 corresponds to W0
1

=0 and modification 2 to W0
2=1/2.

IV. MAPPING ONTO THE DIMER MODEL

As was mentioned in previous sections, for W0=0 the
system under inflow �Glauber� dynamics described by the
formula �4� eventually reaches a blocked configuration,
where there is no isolated spin. On the other hand the system
under outflow dynamics described by �5� always reaches a
ferromagnetic steady state. Thus, for W0=0 the difference
between outflow and inflow dynamics is obvious. Neverthe-
less, within the mean-field approach �23� and Galam’s uni-
fying frame �6� both dynamics are equivalent, i.e., there is no
difference between outflow and inflow dynamics, even for
W0=0.

Here we use the illuminating method of mapping the Ising
spin system onto the dimer RSA model, which has already
been done for the inflow dynamics �2�:

Xi = SiSi+1 = 1 Þ � ,

Xi = SiSi+1 = − 1 Þ • . �6�

In the case of inflow dynamics the following transitions,
which change the state of the system, are possible:

spins particles

↓↑ ↓ → ↓ ↓↓ • • → � �

↑↓ ↑ → ↑ ↑↑ • • → � �

↓↑ ↑→
W0

↓ ↓↑ • �→
W0

� •

↑↓ ↓→
W0

↑ ↑↓ • �→
W0

� •

↓↓ ↑→
W0

↓ ↑↑ � •→
W0

• �

↑↑ ↓→
W0

↑ ↓↓ � •→
W0

• �

Thus, after mapping there are only two types of transitions

for inflow dynamics: • • → � � and � •↔
W0

• �. This mapping
shows at once that for W0=0 the dynamics is fully irrevers-
ible, in the sense that each spin flips at most once during the
whole history of the sample.

It should be noticed that if we map the system under
outflow dynamics onto the dimer model we have to take into
account four particles, because changing the border spin in-
fluences the next particle. In this case four types of transi-

tions are possible: � • � → � � • , � • • → � � �, • � •↔
W0

• • �, and

•• •↔
W0

• � � �to make it more clear the flipped spins are de-
noted by double arrows in the table below�:

spins particles

↓↓ Ý ↑ → ↓ ↓ ß↑ � • � → � � •

↑↑ ß ↓ → ↑ ↑ Ý↓ � • � → � � •

↓↓ Ý ↓ → ↓ ↓ ß↓ � • • → � � �

↑↑ ß ↑ → ↑ ↑ Ý↑ � • • → � � �

↓↑ Ý ↓→
W0

↓ ↑ ß↓ • � •→
W0

• • �

↑↓ ß ↑→
W0

↑ ↓ Ý↑ • � •→
W0

• • �

↑↓ Ý ↓→
W0

↑ ↓ ß↓ • • •→
W0

• � �

↓↑ ß ↑→
W0

↓ ↑ Ý↑ • • •→
W0

• � �

↓↑ ß ↓→
W0

↓ ↑ Ý↓ • • �→
W0

• � •

↑↓ Ý ↑→
W0

↑ ↓ ß↑ • • �→
W0

• � •

↑↓ ß ↓→
W0

↑ ↓ Ý↓ • � �→
W0

• • •

↓↑ Ý ↑→
W0

↓ ↑ ß↑ • � �→
W0

• • •

This mapping shows that for W0=0 the outflow dynamics
consists of two processes—diffusion of • particles in the sea
of � and annihilation of •• pairs. Thus our model for W0 with
random sequential updating reduces to the analytically solv-
able reaction-diffusion system A+A→0 �denoting the empty
place by � and the A particle by •�.

For W0�0 we can also easily use the mean-field approach
�MFA�. Mean-field results for the outflow dynamics without
dimer mapping can be found in �23�. Within dimer mapping
we take into account correlations between pairs of nearest
neighbors. Thus if we apply the MFA to the mapped system
we expect more correct results than are obtained within the
MFA without mapping.

Let us denote the number of • particles by Nb and
Nb

N =b.
In our case, in one time step �, only two events are

possible—the number of • particles decreases by 2/N with
probability ��b� or remains constant.

For the inflow dynamics

�in�b� = b2 �7�

and for the outflow dynamics

�out�b� = �1 − b�b2 + W0b3 = b2�1 − b�1 − W0�� . �8�

It is seen that the above results are not precise, since there
is no dependence between �in�b� and W0 for the inflow dy-
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namics and the only stable steady state in this case is b=0,
i.e., the ferromagnetic state, which is true as long as W0�0.
However, as has been noticed this result is not correct for
W0=0. The same results can be obtained using the mean-
field approach without mapping.

However, for the outflow dynamics the MFA with dimer
mapping gives better results than the basic MFA presented in
�23�. This is understandable, because in this case pairs of
neighboring spins cause the changes in the system.

For W0=0 there are two steady states, b=0, i.e., the fer-
romagnetic state, and b=1, i.e., the antiferromagnetic state.
For b�0 and b�1 �out�b��0 which implies that b=0 is an
unstable steady state, while b=1 is a stable steady state. This
result is in agreement with computer simulations �5�. For
W0=1 there is only one ferromagnetic steady state, which is
also confirmed by the computer simulations �4�.

As we see the differences between outflow and inflow
dynamics are already seen if we apply the mean-field ap-
proach with mapping of the pairs of spins into single par-
ticles. In the next section we present simulation results which
show more differences between these two dynamics.

V. SIMULATION RESULTS

The spin updating within both dynamics can be sequential
or parallel. Within the parallel �or in other words synchro-
nous� updating the system state at time step t+1 is given by
its state at time step t. At every time step t we go systemi-
cally through the whole lattice and change spins according to
the appropriate rule. In the random sequential �or in other
words asynchronous� updating in each time step only one
spin is selected at random and it adapts to its neighborhood.
One Monte Carlo step �MCS� in this case consists of N time
steps, while in the case of parallel updating one MCS is
equivalent to a single time step.

In this paper we compare both dynamics for random se-
quential updating, parallel updating, and partially parallel up-
dating. From now on we call the last case c-parallel updat-
ing. Within this updating the randomly chosen fraction c of
spins is updated synchronously. Of course c=1 corresponds
to parallel updating and c=0 to random sequential updating.

A. The number of persistent spins

One of the main quantities of interest in the nonequilib-
rium dynamics of spin systems at zero temperature is the
fraction of spins P�t� that persist in the same state up to some
later time t=N� �i.e., measured in Monte Carlo steps�
�24,25�. In this paper we measure the fraction of persistent
spins for both outflow and inflow dynamics with c-parallel
updating for different values of c. The initial configuration
consists of a randomly distributed fraction p+�0� of up spins.
The number of persistent spins for the outflow dynamics
with W0=0 and random sequential updating has already been
investigated by Stauffer and Oliveira �26� and found to agree
with results for the inflow dynamics, i.e., decays with time t
as 1/ t−3/8. However, it was found that in higher dimensions
the exponents for inflow and outflow dynamics are different
�26�. Here we investigate the case of the Ising spin chain

more carefully, i.e., for different values of W0 and c.
The first difference between inflow and outflow dynamics

is already seen for random sequential updating, i.e., c=0. For
both dynamics the number of persistent spins decays initially
as a power law �t−	. However, for inflow dynamics the ex-
ponent is independent of W0 until W0�0, while for outflow
dynamics the exponent is W0 dependent, 	=	�c� �see Fig. 1�.
Moreover, for inflow dynamics the power law describes
properly the decay of the number of persistent spins for the
whole range of time, while within the outflow dynamics it is
valid only for t smaller than a certain value of time t*�W0�
dependent on the flipping probability W0. For W0→0 we
obtain t*�W0�→
 and the evolution of the number of persis-
tent spins is the same for outflow and inflow dynamics in
agreement with the results obtained by Stauffer and Oliveira
�26�.

More differences are seen for partially synchronous up-
dating with c�0. At each elementary time step � the fraction
c of spins is chosen randomly and the chosen group is
changed synchronously. In such a case we have noticed that
the number of persistent spins still decays as a power law for
the inflow dynamics. However, for the outflow dynamics the
power law is no longer valid. The number of persistent spins
decays very fast in this case �see Fig. 2�.

We may conclude this subsection in the following – the
number of persistent spins is c sensible only for the outflow
dynamics. For W0�0 and any value of c the number of
persistent spins in the inflow dynamics is described by the
power law with nearly the same exponent.

B. The number of clusters

Probably the most natural way to investigate the relax-
ation process of the consensus dynamics is to look at the
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FIG. 1. The change in time of the number of persistent spins on
the chain N=300 for random sequential updating �i.e., c=0� for the
inflow dynamics �upper panel� and outflow dynamics �lower panel�.
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number of clusters �or number of domain walls between
neighboring opposite spins� over time. A cluster consists of a
group of spins, each of which is a nearest neighbor to at least
one other spin in the cluster, with all spins having the same
orientation. With such a definition consensus is reached
when only one cluster is present in the system or when there
is no domain wall. Because of the similarity of both dynam-
ics �inflow and outflow� with random sequential updating to
the VM, we expected, and have verified numerically, that the
density of domain walls �as well as the number of clusters�
decays as t−1/2, analogously with the results for the MR
model �8�.

Moreover, for both inflow and outflow dynamics with
c-parallel updating the number of clusters �and the number of
domain walls� monotonically decays as t−1/2 for any value of
c. This result shows that the variation of the number of clus-
ters in time, although is a very intuitive and natural measure
of the relaxation, is not a good quantity for dynamics com-
parison.

C. The mean relaxation time

The differences between the dynamics can be observed
clearly if we look at the mean relaxation time as a function of
the initial fraction of randomly distributed up spins p+�0�.
Within 0-parallel updating �i.e., random sequential updating�
the relaxation is much slower for the inflow dynamics than
for the outflow dynamics. This is also true for the c-parallel
updating with small c. On the contrary, within 1-parallel up-
dating �i.e., synchronous updating� the relaxation under out-
flow dynamics is slower than under inflow �see Fig. 3�.

In general, the relaxation time decays with W0 growth, but
the dependence between the mean relaxation time and W0 is
different for outflow and inflow dynamics. Two examples for
c=0.2 and 0.5 for several values of W0 are shown in Figs. 4
and 5, respectively. It can be noted that, for example, for c
=0.5 and W0=0.8 the dependence between the mean relax-
ation time and the initial concentration of up spins p+�0� is
nearly the same.

In Fig. 6 we have presented the dependence between the
mean relaxation times from a random initial state consisting
of 50% randomly distributed up spins �maximal waiting
time� and the flipping probability W0 for the inflow and out-
flow dynamics. It is seen that the dependence on c is much
stronger for the outflow dynamics. For the inflow dynamics
the mean relaxation time is almost the same for all values of
c. On the other hand for a given value of c the dependence
between ��	 and W0 is stronger for the inflow dynamics.

D. The distribution of waiting times

In the paper �23� the mean-field approach for the outflow
dynamics with W0=0 was presented and the distribution of
waiting times needed to reach the stationary state was found.
Recall that for � initial conditions the distribution of waiting
times has an exponential tail �23�:

Pst
���� 


6

4
�1 − m0

2�e−2�, � → 
 . �9�

Monte Carlo simulations confirm this prediction both on the
complete graph and on the chain. In this paper we have
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FIG. 2. The change in time of the number of persistent spins on
the chain N=300 for partially synchronous updating for W0=1/2.
Upper panel presents results for c=0 and lower for c=0.2. It is seen
that for c�0 �bottom case� the number of persistent spins decays
very fast and cannot be described by a power law.
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FIG. 3. The mean relaxation times from a random initial state
consisting of p+�0� randomly distributed up spins for W0=0.2. Up-
per panel corresponds to synchronous updating c=1, and bottom
panel to c=0.2. It is seen that the relaxation under outflow dynam-
ics is slower then under inflow for synchronous updating. On the
contrary, the relaxation is much slower under the inflow dynamics
than under the outflow dynamics for small c.
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checked also the distribution of waiting times for different
values of W0 and c for both outflow and inflow dynamics.
The distribution of waiting times has an exponential tail for
any value of W0 and c, although the exponent depends on
these parameters. The example for c=0, showing comparison
between inflow and outflow dynamics, is shown in Fig. 7.

VI. CONCLUSIONS

It has been suggested �6,7� that zero-temperature outflow
and inflow dynamics for an Ising ferromagnet with nearest-
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neighbor interactions are equivalent in one dimension. How-
ever, it is certainly not true for W0=0. This particular value
corresponds to the constrained zero-temperature Glauber dy-
namics where the only possible moves are flips of isolated
spins and the system therefore eventually reaches a blocked
configuration, where there is no isolated spin �2�. This can be
also easily shown using the method of mapping the Ising
spin system onto the RSA dimer model. On the other hand,
the outflow dynamics leads to a ferromagnetic steady state
for any value of W0. This observation motivated us to com-
pare both dynamics more carefully. We have made Monte
Carlo simulations for both dynamics using random sequen-
tial updating, parallel updating, and c-parallel updating �a
randomly chosen fraction c of spins is updated synchro-
nously�. We have measured, for different values of W0 and c,
the distribution of waiting times, the mean waiting time, the
decay of the number of clusters, and the number of persistent
spins in time.

A qualitative difference between inflow and outflow dy-
namics is not visible either in the number of clusters in time
or in the distribution of waiting times. However, it should be
noticed that the relaxation time is different for the two both
dynamics. Nevertheless, for both dynamics the distribution
of waiting times has an exponential tail and the number of
clusters decays as t−1/2 for any value of W0�0 and c.

Differences between the dynamics appear if we look at
the dependence between the mean relaxation time and the
initial concentration of randomly distributed up spins for dif-
ferent values of W0 and c. For c=0, which corresponds to
random sequential updating, the mean relaxation time is
shorter for the outflow dynamics �e.g., for W0=0.2 and p0
=0.5 it is about ten times shorter� than for inflow. The mean
relaxation time ��	 decreases with W0 growth for both dy-
namics, but the dependence between ��	 and W0 is different
for outflow and inflow dynamics. Generally the mean relax-
ation time decays faster with growing W0 for the inflow dy-
namics for any value of c. Moreover, with growing c the
dependence between the mean relaxation time for the inflow

dynamics and the outflow dynamics vanishes. As a result, for
some values of c and W0 �e.g., c=0.5 and W0=0.8� the de-
pendence between the mean relaxation times and the initial
concentration of up spins is identical. Of course this suggests
that for some values of parameters W0 and c the relaxation
under outflow dynamics is faster than under inflow dynam-
ics. This is indeed true. In the case of c=1 �parallel updat-
ing�, the relaxation is faster under the inflow dynamics for
any value of W0.

The second quantity that behaves differently for the two
dynamics is the number of persistent spins in time. Mainly
differences are seen for partially synchronous updating with
c�0. In such a case we have noticed that the number of
persistent spins decays as a power law for the inflow dynam-
ics �as in the case of c=0�. However, for the outflow dynam-
ics the power law is no longer valid. The number of persis-
tent spins decays very fast in this case.

Concluding, the inflow and outflow dynamics differ very
clearly even in one dimension. There is an obvious, very
strong difference for W0=0, but also for W0�0 the two dy-
namics are qualitatively different. In the case of random se-
quential updating the relaxation under outflow dynamics is
much faster than under inflow dynamics. On the contrary in
the case of parallel updating the outflow dynamics is much
slower than the inflow.

In closing this paper we should mention that the outflow
dynamics with W0=0 with synchronous updating was inves-
tigated earlier and it was found that in such a case the pos-
sibility of reaching a consensus is reduced quite dramatically
�27�. Also the number of persistent spins varies with c only
for the outflow dynamics. For W0�0 and any value of c the
number of persistent spins in the inflow dynamics is de-
scribed by a power law with nearly the same exponent.

Generally the outflow dynamics is much more influenced
by the type of updating than the inflow dynamics. We believe
that this result especially is very important in the various
interdisciplinary applications of the zero-temperature single-
spin-flip dynamics.
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